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Abstract
The identification of children with traumatic brain injury (TBI) who are at risk of death or poor global neu-
rological functional outcome remains a challenge. Magnetic resonance imaging (MRI) can detect several
brain pathologies that are a result of TBI; however, the types and locations of pathology that are the
most predictive remain to be determined. Forty-two critically ill children with TBI were recruited prospec-
tively from pediatric intensive care units at five Canadian children’s hospitals. Pathologies detected on sub-
acute phase MRIs included cerebral hematoma, herniation, cerebral laceration, cerebral edema, midline
shift, and the presence and location of cerebral contusion or diffuse axonal injury (DAI) in 28 regions of in-
terest were assessed. Global functional outcome or death more than 12 months post-injury was assessed
using the Pediatric Cerebral Performance Category score. Linear modeling was employed to evaluate the
utility of an MRI composite score for predicting long-term global neurological function or death after injury,
and nonlinear Random Forest modeling was used to identify which MRI features have the most predictive
utility. A linear predictive model of favorable versus unfavorable long-term outcomes was significantly im-
proved when an MRI composite score was added to clinical variables. Nonlinear Random Forest modeling
identified five MRI variables as stable predictors of poor outcomes: presence of herniation, DAI in the pa-
rietal lobe, DAI in the subcortical white matter, DAI in the posterior corpus callosum, and cerebral contusion
in the anterior temporal lobe. Clinical MRI has prognostic value to identify children with TBI at risk of long-
term unfavorable outcomes.
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Introduction
Traumatic brain injury (TBI) is a major cause of death

and acquired disability in children and youth.1,2 These

injuries often result in lifelong sequelae including physi-

cal disability, memory problems and learning disor-

ders.3,4 Importantly, there is significant variability in

functional neurological outcomes in surviving children.

Establishing a reliable prognosis, in the early phases

after injury, remains a challenge because clinical and

injury-related factors are only moderately predictive of

long-term outcomes.5–7

The current approach to evaluating TBI, in the early

phase after injury, involves a broad clinical assessment

and basic neuroimaging studies, typically computed

tomography (CT). While CT imaging is sufficient for

diagnosis and assessing the need for neurosurgical inter-

vention, it has a low sensitivity to detect many important

lesions (e.g., diffuse axonal injury (DAI)) hindering its

predictive utility for long-term functional outcomes.8

Our inability to identify children at risk of poor recovery

makes it difficult to make level of care decisions in the

pediatric intensive care unit (PICU) and to plan early re-

habilitation and educational interventions that have the

potential to improve long-term outcomes.9

Magnetic resonance imaging (MRI) modalities present

an opportunity to detect injuries overlooked by conven-

tional CT imaging, and lesions detected with MRI previ-

ously have been reported to be associated with functional

outcomes.8,10,11 The complex neuropathology of TBI

consists of interactions among primary and secondary in-

jury mechanisms, involving both focal injuries (e.g., con-

tusions and hemorrhages) and diffuse injuries (e.g.,

DAI).7,12 A DAI is initiated by the rapid acceleration or

deceleration of the brain inside the skull, disrupting

white matter integrity, and has been shown to play a piv-

otal role in functional outcome.13–15 Pediatric patients are

particularly susceptible to these types of shear injuries,

because of the higher water content and reduced amount

of myelin in the developing brain.16,17

Importantly, MRI modalities such as diffusion

weighted imaging (DWI) and T2* weighted gradient

echo (T2* GRE) sequence imaging are unique in their

sensitivity to these types of injury.18–20 Therefore, MRI

has great potential to improve prognostic models for inte-

gration into the clinical care of critically ill children and

adolescents with TBI.21

A large amount of data is generated from MRI after

brain injury, because of its increased sensitivity for detect-

ing multiple pathologies. This makes it challenging to

identify MRI features that are most relevant for prognostic

models. A number of MRI scoring schemes have been de-

veloped to summarize this wealth of MRI data, most no-

tably the depth of lesion model22; however, the failure of

these models to predict long-term functional outcomes

has limited their applicability in clinical settings.23 It is

unclear what type and location of pathology detected

with MRI should be included in prognostic models.

We conducted a prospective multi-center study in crit-

ically ill children with TBI to evaluate the use of subacute

phase MRI data in predictive models of long-term out-

come after TBI. First, we developed a prognostic

model, using clinical variables and a novel composite

MRI score, to predict children at risk of unfavorable

functional neurological outcomes or death more than

one-year after TBI. We then used the Random Forest

(RF) machine learning algorithm24 to examine all MRI

variables to determine objectively the most predictive

MRI features and formulate a second prognostic model.

Methods
Subject recruitment and data collection
Consecutive children age 5 to 17 with mild, moderate,

and severe TBI were recruited from five PICUs in

Canada. The eligibility criteria for the Attention and

Traumatic Brain Injury study have been published previ-

ously25–28 and are included in the Supplementary Appen-

dix. Demographic information, data relevant to the

trauma and clinical prognostic factors (e.g., Glasgow

Coma Scale [GCS] score) were collected during the

admission to the PICU. The prospective study protocol

included collecting MRIs to determine whether findings

on MRI had value as a prognostic biomarker. This

study was approved by ethics review boards at all five

participating hospitals. Parent or guardian consent was

obtained before data collection.

MRI
The MRI acquisition sequences were acquired as part of

the study protocol on clinical 1.5T scanners and included

a T1-weighted, T2-weighted, diffusion weighted, fluid at-

tenuated inversion recovery (FLAIR), and T2* weighted

gradient echo sequence. The goal was to perform MRIs

within two weeks of injury, and MRIs were timed

based on clinical indications and/or clinical stability.

Sedation and anesthesia were used, if necessary, during

the MRI.

In this study, DAI was radiologically defined using

FLAIR, DWI, and T2* GRE. The diagnosis of DAI was

based on a combination of FLAIR hyperintensity, diffu-

sion restriction, and susceptibility on T2* GRE. An

MRI assessment tool and scoring procedure was devel-

oped by an expert panel (see Supplementary Appendix).

A board certified pediatric neuroradiologist (EW) coded

each MRI for the presence of 62 injury variables: cerebral

hematoma, transtentorial and/or foramen magnum hernia-

tion, cerebral laceration, cerebral edema, midline shift,

and the presence and location of cerebral contusion or
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DAI in 28 regions of interest (ROI, see Supplementary

Appendix). From these data, a composite score was de-

rived for each subject’s MRI (see Supplementary Appen-

dix). The MRI score ranged from 0 to 37 with 0

representing no pathology and 37 representing the worst

pathology and/or highest number of ROIs with DAI.

Global functional neurological and mortality
outcome measure
The functional outcome or death of each child was

assessed using the pediatric cerebral performance cate-

gory (PCPC), a measure of neurological function and

death developed and validated for patients admitted to

the PICU.29 The PCPC score ranges from 1, correspond-

ing to normal functioning, to 6, corresponding to death.

The ‘‘pre-injury’’ score was collected within a week of

the injury, to provide an assessment of pre-injury neuro-

logical function. The long-term PCPC score was col-

lected by telephone interview of a parent at 12 or more

months after injury. If we were unable to reach the parent

by phone, the PCPC was collected from physician medi-

cal records of neurological assessments from follow-up

clinics.

Functional status or death was defined as a binary out-

come based on the reduction in PCPC score at the long-

term assessment compared with pre-injury functioning.

Unfavorable outcomes were defined as DPCPC >1, and

favourable outcomes were defined as DPCPC £1.

Statistical analysis
The association between demographic and clinical prog-

nostic factors, the MRI composite score, and unfavorable

outcome were analyzed using multi-variable regression

models (area under the receiver operating characteristic

[ROC] curves). Two regression models were examined:

(1) a linear model composed of three clinical factors pre-

viously validated as the most predictive independent var-

iables, as suggested by Haghbayan and associates9 (age at

injury, GCS score, and pupillary reactivity), and (2) a lin-

ear model composed of those same clinical factors and

the composite MRI score. The rationale for the small

number of prognostic factors entered into our multi-

variable models was based on our small sample size.

Comparison of the two linear models was performed

using the Delong test for two correlated ROC curves.

To overcome the limited number of prognostic factors

than can be incorporated into linear multi-variable mod-

els and identify the MRI features that account for the pre-

dictive utility of the MRI composite score, nonlinear

regression analysis was employed to generate regression

models that included all 62 variables from the MRI data-

set. The RF is a machine learning algorithm that assesses

each variable’s predictiveness using the Breiman-Cutler

variable importance measure (VIMP), such that larger

VIMP values represent the most predictive variables.24

In accordance with the procedure from Oyefiade and col-

leagues,30 modifications were made from the standard RF

approach (see Supplementary Appendix for full descrip-

tion), including variable selection in a two-step process

by generating three predictive models.

The first model included all the MRI variables. The

second model included a reduced number of MRI vari-

ables with positive VIMP measures from the previous

model. The third model included the fewest and most pre-

dictive MRI variables, only selecting variables that

remained predictive through both previous RF models.

The predictive value of each RF model was assessed

using ROC curves, percent error rate, and percent vari-

ance explained; overfitting was minimized by limiting

the number of trees and depth within each model. All an-

alyses were performed using R v3.5.2 of the RF SRC

package v2.9.1.31

Results
Patients were recruited to the Attention and Traumatic

Brain Injury (ATBI) study prospectively between 2009

and 2012; the long-term follow-up of the last recruited

patient was completed in 2013. We have previously

reported more detailed patient and injury characteristics

for the ATBI study.25–28 Fifty-eight of 129 (45%) patients

who met eligibility criteria for the study were enrolled in

the study. The reasons for nonenrollment are shown in

Figure 1.

The research ethics boards, at the study sites, did not

allow us to collect data on patients without informed con-

sent, which would have allowed us to compare enrolled

to nonenrolled eligible patients. Forty-two of 58 (72%)

children and adolescents completed MRI and full PCPC

measurements (Fig. 1). The main reason for not obtaining

an MRI was that the attending physician judged that se-

dation or anesthesia to obtain the research MRI would

pose undue risk for the patient. Another reason was that

the patient was discharged from the hospital before

obtaining an MRI and was unwilling to come back to

the hospital for the MRI.

Thirty-eight of 42 (90%) patients had MRIs performed

within two weeks of injury (range 1–11 days), and the

remaining four patients had MRIs performed at 18, 29,

65, and 91 days post-injury, respectively. The MRIs

were performed at a median of 3.86 days after injury

(interquartile range [IQR] = 5.08 days).

In Table 1, we compare the patient characteristics, in-

cluding study site, sex, age, GCS score, pupillary reactiv-

ity, PCPC outcome, and death in the 42 patients enrolled

in the MRI study with the 16 patients with missing MRI

and/or outcome data that could not be included in the

MRI study. A summary of the cerebral pathologies iden-

tified using MRI is shown in Table 2.
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Long-term outcomes
Twenty-six of 42 (62%) patients had their PCPC scored

using parental interview. The time of interview ranged

from 11.8 to 18.8 months (mean 12.6 – 1.51 months)

after injury. Sixteen of 42 (38%) patients had their

PCPC scored from medical records. Follow-up visits

ranged from 12.0 to 53.3 months (mean 31.1 – 12.5

months) post-injury.

Linear modeling
The composite MRI scores were used to generate a linear

predictive model of long-term unfavorable global func-

tional outcome or death (Fig. 2). Three clinical variables

previously established as independent predictive vari-

ables (age at injury, GCS score, and pupillary reactivity)

showed modest prediction of unfavorable functional out-

come or death (area under the curve [AUC] = 0.613).

Inclusion of the MRI composite score to the predictive

model, in addition to these clinical variables, significantly

improved prediction of functional outcome or death

(AUC = 0.752; p = 0.03).

Nonlinear modeling – RF
The RF analysis was used subsequently to assess the pre-

dictive value of all of the specific features of MRI lesions

coded by the neuroradiologist (see Supplementary

Appendix table). We identified 13 MRI variables with

positive VIMP measures and included these in the second

model. Five of these 13 (38%) variables remained predic-

tive of unfavorable outcome or death through both these

previous RF models. These five most prognostic MRI

variables are listed from the most predictive to the least

Table 1. Demographic and Clinical Data of Attention
and Traumatic Brain Injury Study Participants

Included (n = 42) Excluded (n = 16)

Study site
CHEO 3 (7.1%) 2 (13%)
HHSC 4 (9.5%) 0
HSJ 2 (4.8%) 0
LHSC 11 (26%) 5 (31%)
SK 22 (52%) 9 (56%)

Sex
Female 11 (26%) 6 (37%)
Male 31 (74%) 10 (63%)
Age at injury (mean – SD) 12.6 – 3.3 12.2 – 4.3

Glasgow Coma Scale score
Mild (13-15) 5 (12%) 2 (13%)
Moderate (9-12) 2 (4.9%) 3 (20%)
Severe (<9) 34 (83%) 10 (67%)

Pupillary reactivity
Reactive 37 (88%) 15 (94%)
One Fixed 1 (2.4%) 0 (0%)
Both Fixed 4 (9.5%) 1 (6%)

Functional outcome
Favorable (DPCPC £1) 35 (83%) 13 (93%)
Unfavorable (DPCPC >1) 7 (17%) 1 (7%)

Mortality
Yes 2 (4.8%) 0 (0%)
No 40 (95%) 16 (100%)

Of the 58 participants enrolled in the Attention and Traumatic Brain
Injury cohort, 16 (28%) were excluded because of the absence of patient
magnetic resonance imaging (14), incomplete pediatric cerebral perfor-
mance category (PCPC) follow-up (1), or both (1). CHEO denotes Child-
ren’s Hospital of Eastern Ontario, HHSC denotes Hamilton Health
Sciences Centre, HSJ denotes Hospitalier Sainte-Justine, LHSC denotes
London Health Sciences Centre, and SK denotes SickKids Hospital.
DPCPC denotes the difference between the pre-injury pediatric perfor-
mance category score and the PCPC score obtained at 12 or more months
after injury. SD, standard deviation.

Table 2. Summary of Cerebral Pathology of 42
Study Participants

Cerebral pathology
coded on MRI

Number of
patients (%)

Number of regions
of interest per patient

with lesion (mean – SD)

Cerebral hematoma 8 (19%) NA
Cerebral laceration 1 (2.4%) NA
Cerebral edema 7 (17%) NA
Midline shift 3 (7.1%) NA
Transtentorial herniation 2 (4.8%) NA
Cerebral contusion 33 (79%) 2.9 – 2.2
Diffuse axonal injury 32 (76%) 3.8 – 3.7

The number of patients with each injury type is shown. Accordingly, for
injury variables measured in each of the 28 regions of interest (cerebral con-
tusion and diffuse axonal injury), the mean number of lesions correspond-
ing to that injury type is shown. MRI, magnetic resonance imaging; SD,
standard deviation.

FIG. 1. Attention and Traumatic Brain Injury
study enrollment. Children and adolescents
(n = 186), admitted to five pediatric intensive
care units with a diagnosis of traumatic brain
injury (TBI) were screened for eligibility for the
study. After obtaining informed consent, we
enrolled 58 patients into the study. Forty-two of
these 58 (72%) patients had both acute phase
magnetic resonance imaging (MRI) scans and
Pediatric Cerebral Performance Category scores
collected at 12 or more months post-TBI.
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predictive: DAI in the parietal lobe, DAI in the posterior

corpus callosum, DAI in the subcortical white matter, the

presence of transtentorial herniation, and cortical contu-

sion in the anterior temporal lobe (Fig. 3).

We compared the predictive utility of these three non-

linear models. The first model, consisting of all variables

from the MRI dataset, had an AUC of 0.755. The second

model, consisting of the 13 MRI variables, had an AUC

of 0.849. The third model, including the five most predic-

tive MRI variables, had an AUC of 0.845. Adding the

three predictive clinical variables of age at injury, GCS

score, and pupillary reactivity to these five MRI variables

did not improve the final model (AUC = 0.800). Along

with the AUC, error rate and percent variance explained

were used to further characterize the predictive value of

each MRI predictive model (Fig. 4). With an overall

error rate of 7.14% and 39.3% variance explained, a mea-

sure of data variance accounted for by variables in the

model, the third model outperformed all linear and non-

linear models generated.

MR images, clinical and outcome features
Examples of DAI and other pathologies seen on MRI and

the clinical and outcome features of four patients enrolled

in this study are shown in Figures 5, 6, 7, and 8 and de-

scribed in the figure legends. The two patients shown in

Figure 5 and Figure 7 both had an admission GCS

score of 3 and a PCPC score of 3 (moderate disability)

assessed at 12 months after injury. The MRI scores

were 12 for the patient in Figure 5 and 20 for the patient

in Figure 7. Comparing the pathologies visible on these

two MRIs illustrates the challenges faced by investigators

and clinicians when using MRIs to prognosticate. The pa-

tient in Figure 5 appears to have less pathology compared

with the patient in Figure 7, yet the 12-month global func-

tional outcome scores were the same in both patients.

Discussion
Using data from a prospective multi-center study of 42

critically ill children with TBI, we showed that a multi-

variable model that included a composite MRI score

and clinical predictive variables was associated with

unfavorable global neurological function or death at 12-

months after injury. This prognostic model showed sig-

nificant improvement compared with the multi-variable

model that included the basic clinical predictive variables

alone (age, GCS score, and pupillary reactivity). The im-

portance of these clinical variables is highlighted by a re-

cent meta-analysis by Haghbayan and coworkers9 that

identified a failure of studies assessing the predictive

value of imaging to adequately control for established, in-

dependent prognostic variables.

We then examined our MRI data using a RF analysis, a

nonlinear, machine learning approach, to identify the

neuroimaging findings most closely associated with unfa-

vorable functional outcome. Only five pathologies,

detected using MRI, were retained in the final prognostic

model: DAI in the parietal lobe, DAI in the posterior cor-

pus callosum, DAI in the subcortical white matter, the

presence of herniation, and cortical contusion in the ante-

rior temporal lobe. Interestingly, this model consisting

only of five MRI features showed superior prediction

when compared with all linear and nonlinear prognostic

models, including those incorporating clinical variables.

Other investigators have previously published

approaches to MRI scoring for prognosis in TBI. Pre-

vious scoring procedures for moderate and severe TBI,

including the Firsching Score32 and Adams-Gentry

Classification33 (a method radiologically adapted from

classifying histological brain lesions), principally rely

on staging determined by the most caudal brain region af-

fected. While evidence exists showing risk of unfavor-

able outcome as maximal depth of lesions increases,9

these methods largely ignore lesion load and nonbrain-

stem lesions, which have been shown to be important

prognostic factors for TBI functional recovery.34

FIG. 2. Linear predictive modeling of
unfavorable global neurological outcome or
death. The receiver operating characteristic
(ROC) curves are shown for the three
demographic and clinical prognostic variables of
age, Glasgow Coma Scale score, and pupillary
reactivity alone denoted as ‘‘clinical data’’ and
shown in red, and for the combination of
clinical data and the magnetic resonance
imaging (MRI) composite score, shown in blue.
The predictive model, including the MRI score,
had an area under the ROC curve (AUC) of 0.752
and was significantly better than the model that
included clinical data alone (AUC = 0.613;
p = 0.03). Color image is available online.
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Our MRI scoring approach aims to overcome this lim-

itation, and has added relevance in clinical settings be-

cause the scoring procedure relies on MRI information

available from clinically requested scans. Our findings

also build on work by Smitherman and associates35

who showed that injury volume in specific brain regions,

determined from FLAIR sequences, is predictive of long-

term functional outcomes in children with TBI. Impor-

tantly, our radiological determination of injuries relied

in part on diffusion changes in DWI, along with FLAIR

and T2* GRE, which builds on previous work highlight-

ing the functional significance of DWI and its ability to

discriminate cytotoxic and vasogenic injury after TBI.36

A strength of our approach is the application of a non-

linear methodology to overcome conventional limitations

to the number of independent variables examined using

multi-variable predictive models. The RF algorithm,

through its recursive generation of randomly generated

decision trees, presents a unique alternative to traditional

approaches and enabled the examination of our entire

MRI dataset. To our knowledge, this is the first applica-

tion of RF to predict functional outcome after pediatric

TBI using neuroimaging-based datasets, and it presents

an opportunity to examine the wealth of MRI data gener-

ated for each patient.

All RF predictive models outperformed linear predic-

tive models, with improved error rate and variance

explained measures when the model was refined by re-

moving candidate variables with negative VIMP measures

from the model. Interestingly, the final MRI prediction

model consisting of only five MRI variables showed

greater predictive ability without the addition of the vali-

dated clinical prognostic variables. This finding may indi-

cate that predictive models containing MRI features alone

may be superior to those that rely on basic clinical vari-

ables, at least in the context of nonlinear modeling.

Beyond the generation of a nonlinear predictive model

that supported the value of MRI, the RF analysis also

identified the five key variables that contributed to its pre-

dictive value. Along with the presence of herniation, and

FIG. 3. Random Forest (RF) predictive magnetic resonance imaging (MRI) variables. Density plots of
Breiman-Cutler variable importance (VIMP) measure for important predictors identified by the selection RF
model. The number of iterations of the RF algorithm is provided on the y-axis, while the VIMP measure
associated with each iteration is provided on the x-axis. Diffuse axonal injury (DAI) Parietal, DAI Corpus
Callosum (posterior), Cerebral Contusion (CC) Temporal (anterior), Herniation, and DAI Subcortical provided
positive VIMP measures across all iterations of the selection RF algorithm. Color image is available online.
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cortical contusions within the anterior temporal lobe, the

most highly predictive variables were DAI lesions in

three regions, emphasizing the impact of DAI on the

long-term recovery of neurological function after TBI.

The relevance of injury to these specific brain regions

is supported by previous studies in patients with

TBI.37–40 A series of representative MRIs (Fig. 5–7)

also highlight these specific injuries patterns.

Importantly, some brain regions previously implicated

as important predictors of recovery after TBI were not ul-

timately identified by RF analysis, including injury to the

frontal lobe, brainstem, and thalamus. This may be be-

cause our strict selection criteria for predictive variables,

because injuries to the frontal lobe and brainstem were in-

cluded in the first RF model but did not remain predictive

after the second screening in the second RF model (see

Supplementary Appendix). In addition, RF analysis

may have removed lesser, but still predictive, variables

that have biological importance because it identified

more strongly predictive variables to model our dataset.

While this analysis does not demonstrate causal relation-

ships or elucidate the underlying mechanisms that explain

the association between pathology and decline in functional

status or death, injury to white matter, contusions of the an-

terior temporal lobe, and herniation detected using MRI

may have long lasting effects on brain function essential

for learning and independent function.

Despite our promising findings, we recognize several

limitations of the current study. We were unable to com-

pare demographic and injury characteristics of patients

who met eligibility criteria for this study, but were not en-

rolled, with patients enrolled in our study. We acknowl-

edge that this may have introduced bias into our study.

It will be important to request that research ethics boards

allow collection of this type of data in future prognostic

studies. Prospective studies with larger sample sizes,

which include a larger number of clinical and demo-

graphic prognostic variables in the predictive models,

are needed to validate our findings through multi-variable

regression. We also acknowledge the exploratory nature

of incorporating RF, a machine learning methodology,

for the identification of prognostic MRI variables.

These preliminary results should be further explored

using other machine learning techniques and should

aim to incorporate more detailed measures of neurobeha-

vioral outcome.

‰

FIG. 4. Nonlinear predictive modeling of global
unfavorable neurological outcome or death. The area
under the receiver operating characteristic curves (AUC)
is represented for each of the Random Forest (RF)
prediction models: (A) The first prediction model
included all 62 magnetic resonance imaging (MRI)
variables; (B) the second ‘‘selection’’ model included 13
MRI variables; (C) the final model included only five MRI
variables. The model accuracy is shown using AUC,
percent variance explained (VE), and the Error rate.
Color image is available online.
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FIG. 5. Brain magnetic resonance image of a 15-year-old male taken at seven days after a motor vehicle
collision. The admission Glagow Coma Scale score was 3, the pre-injury Pediatric Cerebral Performance
Category (PCPC) score was 2 (mild disability), and the PCPC measured at 12 months after injury was 3
(moderate disability). (a) Axial fluid attenuated inversion recovery (FLAIR) and (b) axial T2* gradient echo
showing high FLAIR signal associated with susceptibility in the bilateral thalami (arrows), splenium of corpus
callosum (arrows), and right frontal white matter (arrows), in keeping with diffuse axonal injury.

FIG. 6. Brain magnetic resonance image of a 15-year-old male taken at two days after a motor vehicle
collision. The Glasgow Coma Scale score on admission was 6, the pre-injury Pediatric Cerebral Performance
Category (PCPC) score was 2 (mild disability), and the PCPC score measured at 53 months after injury had
returned to the pre-injury score of 2. (a) Axial fluid attenuated inversion recovery (FLAIR) showing contusion
in the bilateral temporal lobes and left inferior frontal lobe (arrows). (b) Axial FLAIR and (c) () axial T2*
hyperintensity showing a focus of FLAIR hyperintensity associated with susceptibility in the left mesial
parietal lobe.
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Accordingly, these prognostic models should capture

outcomes at greater than one year after injury to capture

the impact of disrupted neurodevelopmental processes

and the development of neural plasticity. Future prognos-

tic studies should aim to standardize the timing of post-

injury MRI as changes in the MRI signals, particularly

in the DW MRI and measures of edema, are dynamic

over the first 7–10 days after injury.

In the current study, we used clinically available and

conventional MRI sequences, with clinical utility in

mind. We and others are currently studying the utility

of other novel MRI sequences and approaches that may

further improve prognostic models. Prognostic models

with clinically useful sensitivity and specificity will

likely be based on a more multi-model approach combin-

ing clinical predictors with neuroimaging, blood bio-

markers, and electrophysiological and physiological

biomarkers in children with TBI.25,41,42

In this study, strong predictive models of unfavorable

global outcome or death at 12-months after injury were

developed, using both linear and nonlinear methods, by

supplementing previously validated independent clinical

prognostic variables with MRI data. The use of nonlinear

methods, specifically the RF machine learning algorithm,

FIG. 7. Brain magnetic resonance image of an 11-year-old male taken at four days after injury from an all
terrain vehicle collision and after a right-sided decompressive craniectomy. The admission Glasgow Coma
Scale score was 3, the pre-injury Pediatric Cerebral Performance Category (PCPC) score was 1 (normal
neurological function), and the PCPC score measured at 12 months after injury was 3 (moderate disability).
(a) Axial fluid attenuated inversion recovery (FLAIR) showing right temporal contusion (white arrows). (b)
Axial FLAIR showing hematoma with fluid level in the right lentiform nucleus (white arrow) with
surrounding edema and effacement of the right lateral ventricle (black arrow). Another hematoma is seen
in the right posterior temporal lobe (white arrow). There is high FLAIR signal associated with susceptibility
on the T2* gradient echo in the (b and c) splenium of corpus callosum (arrowhead) and right frontal white
matter (arrowhead), as well as in the (d and e) bilateral thalami (right more than left) (arrowhead), in
keeping with diffuse axonal injury. Hemorrhagic contusion is seen in the right occipital lobe (b and c) (thick
arrow). (d) A small subdural collection is seen overlying the right frontal and temporal lobes (white
arrowhead). (f) The right frontal and temporal lobe herniate through the right craniectomy.
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to analyze MRI data significantly improved the accuracy

of predictive models of unfavorable outcomes in criti-

cally ill children with TBI. If validated in future studies,

these early predictive models could support an accurate

prognosis, improve clinical decision making in the sub-

acute phase of injury, and help to risk stratify patients

for early psychological therapies and rehabilitation and

randomized controlled therapeutic trials.
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FIG. 8. Brain magnetic resonance image of a 15-year-old male taken at two days after a fall. The
admission Glasgow Coma Scale score was 15, the pre-injury Pediatric Cerebral Performance Category (PCPC)
score was 1, and the PCPC score assessed at 12 months after injury was again 1. (a) Axial fluid attenuated
inversion recovery (FLAIR) demonstrating left inferior frontal hematoma (black arrow) and left occipital
subarachnoid hemorrhage (large arrow). (b) Axial FLAIR showing right parietal lobe contusion (white arrow)
and right frontoparietal epidural hematoma (white arrowhead). (c) Curvilinear FLAIR hyperintensity (large
arrow) associated with (d) susceptibility (large arrowhead), in keeping with subarachnoid hemorrhage. (e)
Coronal T2 showing right convexity subdural collection (black arrowhead) and right epidural hematoma
(white arrowhead).
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